Proof Style

نویسنده

  • John Harrison
چکیده

We are concerned with how to communicate a mathematical proof to a computer theorem prover. This can be done in many ways, while allowing the machine to generate a completely formal proof object. The most obvious choice is the amount of guidance required from the user, or from the machine perspective, the degree of automation provided. But another important consideration, which we consider particularly signiicant, is the bias towards a `procedural' or`declarative' proof style. We will explore this choice in depth, and discuss the strengths and weaknesses of declarative and procedural styles for proofs in pure mathematics and for veriication applications. We conclude with a brief summary of our own experiments in trying to combine both approaches. This is the text accompanying my invited talk at the European BRA Types annual meeting in Aussois. This talk was given on the 16th of December 1996, and the present text has been slightly modiied in the light of some of the subsequent discussion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequent Style Proof Terms for HOL

In this work we present proof terms for a Gentzen sequent style presentation of HOL. Existing implementations of proof terms for HOL are natural deduction style systems. Sequent style proof terms have many advantages over natural deduction style proof terms. For example, we can translate proof terms directly into tactics, which we can execute at the tactic level of HOL implementations. We descr...

متن کامل

A Schütte-Tait Style Cut-Elimination Proof for First-Order Gödel Logic

We present a Schütte-Tait style cut-elimination proof for the hypersequent calculus HIF for first-order Gödel logic. This proof allows to bound the depth of the resulting cut-free derivation by 4 |d| ρ(d), where |d| is the depth of the original derivation and ρ(d) the maximal complexity of cut-formulas in it. We compare this Schütte-Tait style cut-elimination proof to a Gentzen style proof.

متن کامل

Structured Derivations as a Unified Proof Style for Teaching Mathematics

Structured derivations were introduced by Back and von Wright as an extension of the calculational proof style originally proposed by E.W. Dijkstra and his colleagues. Structured derivations added nested subderivations and inherited assumptions to the original calculational style. This paper introduces a further extension of the structured derivation format, and gives a precise syntax and seman...

متن کامل

Fast LCF-Style Proof Reconstruction for Z3

The Satisfiability Modulo Theories (SMT) solver Z3 can generate proofs of unsatisfiability. We present independent reconstruction of these proofs in the theorem provers Isabelle/HOL and HOL4 with particular focus on efficiency. Our highly optimized implementations outperform previous LCF-style proof checkers for SMT, often by orders of magnitude. Detailed performance data shows that LCF-style p...

متن کامل

رابطه ی میان شخصیت مقصد و تمایلات رفتاری گردشگران بین المللی

باوجود اینکه پژوهش های بسیاری در زمینه ی برند سازی مقاصد صورت گرفته است، مطالعه در زمینه ی شخصیت مقصد همچنان محدود باقی مانده است. هدف از انجام این پژوهش شناسایی شخصیت مقصد ایران و بررسی رابطه ی میان شخصیت مقصد و تمایلات رفتاری گردشگران بین المللی ورودی با استفاده از مدل آکر(1997) می باشد. جامعه آماری این پژوهش را گردشگران بین المللی ورودی به ایران تشکیل می دهند. پرسشنامه پژوهش به صورت تصادفی م...

متن کامل

Challenges Implementing an LCF-Style Proof System with Haskell

The predominant, root design among current proof assistants, the LCF style, is traditionally realized through impure, functional languages. Thus, languages that eschew side-effects in the name of purity collectively represent a largely untapped platform for exploring alternate implementations of LCF-style provers. The work in this paper details the challenges we have encountered in the developm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996